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Abstract

We present smoothing algorithms for piecewise linear curves, surfaces, and triple lines of

intersection of surfaces that are based on the the idea of sequentially relaxing either individual

nodes or edges in the mesh. Each relaxation is designed both to smooth the mesh and to

conserve down to round-o� error the area or volume enclosed by the curve or surface. For

the case of smoothing surfaces and lines of intersection of surfaces, each relaxation consists

of a pure smoothing component and a volume-conserving correction which is chosen to be of

minimum norm. Since surfaces and triple intersection lines can be conservatively smoothed,

the algorithms are suitable for improving multimaterial grids used by physics simulations where

exactly conserving the volume of each individual material may be a requirement or at least highly

desirable. We show examples of the application of the more powerful edge-based algorithms to

curve, surface, and multimaterial volume grids.

1 Introduction

Curves or surfaces obtained from physics-based simulations are frequently \jagged" or \non-smooth"

and as such may be unsuitable as input for subsequent simulations. For example, Potts model

simulations of metallic grain growth describe the interface between di�ering grains as a series of

\stair-steps". The jagged stair-step interface is an artifact of the simulation and might produce in-

correct results in subsequent simulations unless the interface is smoothed. Another example would

be Lagrangian surface motion under a computational uid dynamics ow which could leave surfaces

highly convoluted after several time-steps and unsuitable for further time-stepping unless they are

smoothed.

By \smoothing" a surface grid, we mean (1) adjacent facets of the surface grid have normals

adjusted to vary more gradually, (2) node densities are equidistributed on the surface, and (3) the

aspect ratios of facets are improved.

A popular approach to surface grid smoothing has been to rely on a mapping from a parametric

space to the surface and to smooth the grid in the parametric space [4, 8]. There are drawbacks

to this approach. First, a mapping to a parametric space must exist, and often surfaces generated

by physical simulations are unstructured and are not easily parameterizable. Second, smoothing

of the surface grid in the parametric domain|while preserving the shape of the surface|does not
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necessarily preserve the volume that the surface grid encloses, due to the discreteness of the grid.

This can be unacceptable in physical simulations. Also, exact preservation of surface shape is

undesirable for \stair-step" surfaces.

Another approach to surface grid smoothing is evolution of the surface grid by mean curvature

[2, 5, 7]. This approach will easily erase jaggedness of the surface, but does not conserve volume,

and requires a sophisticated PDE solver.

In this paper, we present a non-parametric volume conserving approach to the smoothing of

piecewise linear surface grids. Our approach will, for example, rapidly deform a nonsmooth closed

surface into a smoothed surface which encloses the same volume down to round-o� error. The sur-

face grid can be unstructured and the resulting grid will satisfy the three conditions for smoothness

presented above. To accomplish this, our volume conserving approach allows small deformations

in the shape of the surface geometry. However, the degree of surface deformation can be limited

by controlling the number of smoothing iterations performed. Because the algorithms are locally

conservative, they are applicable to open as well as closed curves and surfaces.

In Section 2 we develop area conservative smoothing of piecewise linear curves. In Section 3

we develop volume conservative smoothing of piecewise linear surfaces. In Section 4 we exhibit

algorithms for smoothing of triple intersection lines of surfaces which conserve individually all

volumes incident on the lines. Finally in Section 5 we conclude by tying up some loose ends.

2 Area conserving smoothing of curve grids

Consider a closed non-self-intersecting curve � = (x0;x1; : : : ;xn�1;xn = x0) consisting of n line

segments in IR
2. Say � encloses a region R (Figure 1). We seek a smoothing operation on this

curve that can be performed locally at each xi that involves slightly altering the position of xi
based on nearby or adjacent data points (say fxi�m;xi�m+1; : : : ;xi+mg, m small). More generally,

the smoothing operation could depend on points in fxi�m;xi�m+1; : : : ;xi+mg and involve moving

one or more points in this neighborhood. The smoothing operation should be chosen to not alter

the area of R. If we perform the local smoothing operation in each local neighborhood in the curve

in some order, this is called a sweep. We desire that only a small number of sweeps through the

curve need be performed to smooth the overall appearance of the curve.

If now � is allowed to intersect itself, it is the signed area of R (i.e. with respect to the counter-

clockwise orientation) we wish to conserve. Moreover, we can extend our ideas to an open curve

� = (x0;x1; : : : ;xn�1;xn 6= x0), by requiring that the sought after smoothing operations conserve

area in the closed curve � = (x0;x1; : : : ;xn�1;xn;x0).

The simplest possible area conserving smoothing operation is depicted in Figure 2. Here we

consider the three points x0;x1;x2 along �. By moving the central point x1 parallel to the line

segment x0x2, we are assured conservation of area. Further, by moving x1 such that the projection

of x1 onto x0x2 occurs midway between x0 and x2, we have achieved equal spacing of the segments

x0x1 and x1x2 when projected onto the segment x0x2.

We now formally state the algorithm based on this one-point smoothing operation. For a vector

v = (x; y) in 2-D, we de�ne v? � (�y; x). Let A021 =
1
2(x2 � x0)

? � (x1 � x0) be the (signed) area

of triangle �x0x2x1. Then

h =
2A021

jjx2 � x0jj
(1)

is the height of x1 above the baseline segment x0x2. n̂ =
(x2�x0)

?

jj(x2�x0)?jj
is the unit normal to the
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Figure 1: Closed curve � enclosing region R.
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Figure 2: One-point smoothing operation: Movement of x1 parallel to x0x2 assures conservation

of area under curve (x0;x1;x2).
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Figure 3: Star-shaped region is invariant under (and hence not smoothed by) Algorithm 1.

baseline x0x2. Our smoothing operation thus involves repositioning x1 from its original position to

xnew1 =
1

2
(x0 + x2) + hn̂: (2)

Sweeping through the nodes in sequential order, we obtain the following algorithm:

Algorithm 1 Area Conserving smoothing of a closed plane curve using single-node relaxations.

Repeat (sweep) until \done"

Do i = 0; : : : ; n� 1

[ Perform smoothing operation on neighborhood fxi;xi+1;xi+2g
(i.e., relax node xi+1) ]

n̂ (xi+2�xi)
?

jj(xi+2�xi)?jj

Ai;i+2;i+1  
1
2
(xi+2 � xi)

? � (xi+1 � xi)

h 2
Ai;i+2;i+1

jj(xi+2�xi)?jj

xi+1  
1
2
(xi + xi+2) + hn̂

(If � is not closed, Algorithm 1 is modi�ed to not relax the endpoint nodes.) Algorithm 1,

although simple, su�ers from the following serious de�ciency. Referring to Figure 2, and calling the

direction ��!x0x2 the direction \tangential" to � and the direction orthogonal to ��!x0x2 the \normal"

direction, we see that the one-point smoothing operation smooths only in the the tangential direc-

tion. Any smoothing in the normal direction is forbidden by the conservation of area requirement.

Because of this lack of normal smoothing, some star-shaped regions (Figure 3) will not be a�ected

by the operation. We conclude it is necessary to design a local smoothing operation that includes

normal smoothing.

Now consider four sequential points x0, x1, x2, x3 along �. We take ��!x0x3 to be the direction

tangential to the curve and the direction orthogonal to ��!x0x3 to be normal to the curve. If we

simultaneously solved for the positions of x1, x2 subject to the constraint of area conservation,

normal smoothing is possible. This is because conservation of area represents a single constraint in
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conserves area A0123.

the normal direction, but there are two degrees of freedom available (the normal components of x1
and x2).

Thus, consider the following smoothing operation: Move x1, x2 so that the projection of x1
onto x0x3 is one-third of the way between x0 and x3 and the projection of x2 is two-thirds of the

way between x0 and x3. Furthermore, the distances of x1 and x2 away from x0x3 are set to be

equal and this distance (h in Figure 4) is taken to conserve area. If this is done, smoothing occurs

in the normal direction, as well as in the tangential direction.

The calculation of h is straightforward: The (signed) area A0321 of the quadrilateral (x0;x3;x2;x1)

cannot be altered. Repositioning of the points x1;x2 so that their projections are equally spaced

implies that the area of the quadrilateral (x0;x3;x2;x1) will be
2
3hl, where l is the length of x0x3.

Thus we require

h =
3

2

A0123

l

:

The above smoothing operation can be interpreted as being a smoothing operation acting on the

edge x1x2. Thus, to perform a smoothing sweep through � using the above smoothing operation,

we perform the operation on all the edges of � in some order. For example, if we use sequential

order, we would perform the smoothing operation on the edge x1x2, then perform it on the edge

x2x3, and continue until we have smoothed the last edge xnx1.
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Algorithm 2 Area conserving smoothing of a closed plane curve using edge relaxations.

Repeat (sweep) until \done"

Do i = 0; : : : ; n� 1

[ Perform smoothing operation on neighborhood fxi;xi+1;xi+2;xi+3g
(i.e. relax edge xi+1;xi+2) ]

n̂ (xi+3�xi)
?

jj(xi+3�xi)?jj

Ai;i+3;i+2;i+1  
1
2
(xi+3 � xi)

? � (xi+2 � xi) +
1
2
(xi+2 � xi)

? � (xi+1 � xi)

[ signed area of quad (xi;xi+3;xi+2;xi+1) ]

h 3
2

Ai;i+3;i+2;i+1

jj(xi+3�xi)?jj

xi+1  
2
3
xi +

1
3
xi+3 + hn̂

xi+2  
1
3xi +

2
3xi+3 + hn̂

In Figure 5, we show the results of performing 20 sweeps on a closed curve. Area is conserved

to within round-o� error, and the curve is very smooth. Clearly, further iterations will not a�ect

the appearance of the smoothed curve. In Figure 6, we show the results of performing Algorithm

2 with 10 sweeps on an open curve �, holding the �rst and last points �xed. If � were closed by

addition of a segment between the �rst and last points, the area enclosed by � would be conserved

down to round-o� error. Further iterations will continue to deform the curve.

3 Volume conserving smoothing of surface grids

Now consider a closed surface S =
S
Ti, where the Ti are planar triangular facets Ti = T

xi1
xi2

xi3
.

We wish to perform a local smoothing operation in sweeps over small neighborhoods throughout

the surface which will have the net a�ect of smoothing the surface without changing the amount

of volume enclosed by the faceted surface. (If the surface is subdivided by other types of geometric

facets|such as quadrilaterals|they can be subdivided into triangular facets for purposes of the

following smoothing schemes.) More generally, if S is not closed we seek a local smoothing operation

that does not alter the enclosed volume when S has been closed by some choice of additional

triangles.

Similar to the previous section, we �rst consider the simple operation of altering the position of

a single node at x based on data from its immediate neighbors. Consider Figure 7, here the node at

x is surrounded by the points x(1);x(2); : : : ;x(n), which form a counter-clockwise cycle when viewed

from \outside" the surface. We de�ne

e(j) = x(j) � x:

Suppose we move the node at x to xs � x+ dxs through the action of a smoothing operation only

depending on data in the immediately surrounding neighborhood. Since this motion will in general

alter the volume enclosed by the surface, we restore the correct volume by further repositioning the

central node by hn̂. That is, to ensure conservation of volume, we further move the central node by

some multiple h of a prudently chosen direction. Thus, the node will undergo a total displacement

from x to x+ dx, where

dx = dxs + hn̂: (3)

In fact, we can easily solve for the direction n̂ that minimizes the norm of the volume correction

movement jjhn̂jj and it will be a direction that could be reasonably considered to be \normal" to

the undisturbed surface at x.
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Figure 5: Before and after smoothing of a closed stair-step curve using Algorithm 2 with 20 sweeps.

Area of region R conserved down to round-o�.

Γ
new

Γ

Figure 6: Before and after smoothing of an open curve using Algorithm 2 with 10 sweeps.
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Figure 7: Node at x on triangular faceted surface surrounded by n neighbors at x(1); :::;x(n).

Indeed, when the node is moved from x to x+ dxs + hn̂, the change of volume is given by

6dV =
nX

j=1

(dxs + hn̂) � e(j) � e(j+1) (4)

= (dxs + hn̂) �
nX

j=1

e(j) � e(j+1):

(The \6" arises from use of the volume formula for tetrahedra employed for the terms in the sum

in (4).) Thus dV = 0 implies

h =
�dxs �

P
n

j=1 e
(j) � e(j+1)

n̂ �
P

n

j=1 e
(j) � e(j+1)

:

Thus if we choose

n̂ =

P
n

j=1 e
(j) � e(j+1)

jj
P

n

j=1 e
(j) � e(j+1)jj

:; (5)

then jjhn̂jj will be minimized and our minimal volume corrective movement will be

hn̂ = �(dxs � n̂)n̂: (6)

Note that n̂ could reasonably be considered to be the \normal" to the undisturbed surface at x,

since it is the normalized sum of area vectors of all triangles incident on x.

It remains to specify the smoothing scheme that yields xs based on nearest neighbor information.

We choose Laplacian smoothing, de�ned by

xs = x+ dxs �

P
n

j=1 x
(j)

n

:

With this choice, our smoothing scheme (3),(6) is entirely analogous to our simple smoothing

scheme for curves (2). However, the correction (6) can be used with any smoothing scheme x! xs,

and indeed smoothing schemes more sophisticated than Laplacian smoothing are available [3].
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Algorithm 3 Volume conserving smoothing of a surface using single-node relaxations.

Repeat (sweep) until \done"

For each node x surrounded by neighbors fx(1);x(2); : : : ;x(n)g

n̂ 

Pn

j=1
e(j)�e(j+1)

jj
Pn

j=1
e(j)�e(j+1) jj

dxs  

Pn

j=1
x
(j)

n
� x

x x+ dxs � (dxs � n̂)n̂

We give our simple volume corrected smoothing scheme with Laplacian smoothing in Algorithm

3. The weakness of Algorithm 3 is identical to that of the analogous scheme (Algorithm 1) presented

in the previous section. Both schemes are simple, but lack smoothing in the direction normal to the

surface, since conservation of area or volume fully determines the normal distance of the relaxed

node from the surface. As a consequence, Algorithm 3 will leave some star-shaped polyhedra

(analogous to Figure 3) unchanged.

Analogous to the development of the previous section, we develop a smoothing operation which

exhibits smoothing normal to the surface, and which involves relaxing two adjacent neighbors|

thus we relax edges on the surface. Consider Figure 8, here we contemplate relaxing the edge x1x2
based on data from the surrounding nodes.

Here x1 is surrounded by the nodes x
(1)
1 ;x

(2)
1 ; : : : ;x

(n1)
1 , and x2 is surrounded by nodes

x
(1)
2 ;x

(2)
2 ; : : : ;x

(n2)
2 , such that

x2 = x
(1)
1 and

x1 = x
(1)
2 :

We de�ne e
(j)
i

= x
(j)
i
� xi. We also de�ne

Ai =

niX
j=1

e
(j)
i
� e

(j+1)
i

: i = 1; 2 (7)
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We now contemplate moving xi to x
s
i
� xi+dxs

i
by some smoothing operation and then further

shifting the two nodes by hn̂, which is a multiple h of an optimal direction n̂ chosen such that

volume is conserved and jjhn̂jj is minimal. We derive the optimal change hn̂ as follows. The two

nodes undergo the total displacement

dxi � dxs
i
+ hn̂: i = 1; 2: (8)

The movement of the node at x1 to x1 + dx1 causes the triangles f(x1;x
(j)
1 ;x

(j+1)
1 ) j 1 � j �

n1g to \sweep out" volume between their initial positions and their �nal positions at f(x1 +

dx1;x
(j)
1 ;x

(j+1)
1 ) j 1 � j � n1g. The volume change caused by motion of the node at x1 to

x1+ dx1 is thus equal to the volume of the tetrahedra f(x1;x1 + dx1;x
(j)
1 ;x

(j+1)
1 ) j 1 � j � n1g, or

6dV1 =
n1X
j=1

dx1 � e
(j)
1 � e

(j+1)
1 (9)

= dx1 �A1:

Next, the movement of the node at x2 to x2 + dx2 creates a volume change similar to (9), but we

must take into account that the node at x1 = x
(1)
2 has already been moved to x1 + dx1. That is,

e
(1)
2 has been changed to e

(1)
2 + dx1. Thus, de�ning

g
e
(1)

2 = e
(1)
2 + dx1g

e
(j)

2 = e
(j)
2 ; 2 � j � n2;

we have

6dV2 =
n2X
j=1

dx2 �
g
e
(j)

2 �
g
e
(j+1)

2

=
n2X
j=1

dx2 � e
(j)
2 � e

(j+1)
2 + dx2 � dx1 � e

(2)
2 + dx2 � e

(n2)
2 � dx1

= dx2 �A2 + dx2 � (e
(n2)
2 � e

(2)
2 )� dx1

= dx2 �A2 + dx2 � v � dx1;

where

v � e
(n2)
2 � e

(2)
2 = e

(2)
1 � e

(n1)
1 : (10)

Thus conservation of volume requires us to have

0 = 6dV = 6dV1 + 6dV2

= dx1 �A1 + dx2 �A2 + dx2 � v � dx1: (11)

Substituting (8) into (11) and solving for h yields

h = �
dxs1 �A1 + dxs2 �A2 + dxs2 � v � dxs1
n̂ � (A1 +A2 + v � (dxs1 � dxs2))

: (12)

Thus jjhn̂jj is minimized if we choose

n̂ =
A1 +A2 + v � (dxs1 � dxs2)

jjA1 +A2 + v � (dxs1 � dxs2)jj
: (13)
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That is, the distance the edge x1x2 is translated to recover volume is minimal when we choose h

and n̂ according to (12) and (13).

It remains to specify the smoothing scheme that yields the xs
i
based on nearest neighbor infor-

mation. We choose simultaneous Laplacian smoothing of both xi. That is, we require

xs1 =
1

n1

0@xs2 + n1X
j=2

x
(j)
1

1A and (14)

xs2 =
1

n2

0@xs1 + n2X
j=2

x
(j)
2

1A
: (15)

Substituting (15) into (14), we obtain

xs1 =
1

n1n2 � 1

n2X
j=2

x
(j)
2 +

n2

n1n2 � 1

n1X
j=2

x
(j)
1 : (16)

We can now compute xs1 using (16), and then compute xs2 by substituting the result into (15).

However the correction given by (8), (12), and (13) can be used with any smoothing scheme

that modi�es the edge x1x2. For one of our test problems, we instead used underrelaxed Laplacian

smoothing:

xs
i
 (1� !)xi + !xs

i
; i = 1; 2;

where the xs
i
on the right-hand side are the positions yielded by simultaneous Laplacian smoothing

(14), (15) and the xs
i
on the left-hand side are the positions given by underrelaxed Laplacian

smoothing with 0 < ! � 1. This allows smoothing to be slowed down in order to more �nely

control surface deformation from iteration to iteration. Algorithm 4 gives our volume conserving

smoothing scheme with edge relaxation by underrelaxed simultaneous Laplacian smoothing.

Algorithm 4 Volume conserving smoothing of a surface using edge relaxations.

Repeat (sweep) until \done"

For each edge x1x2 surrounded by neighbors fx
(j)
i
g
j=1;:::;ni
i=1;2 (Fig. 8), relax edge:

Ai  
P

ni

j=1 e
(j)
i
� e

(j+1)
i

; i = 1; 2

v e
(n2)
2 � e

(2)
2

xs1  
1

n1n2�1

�P
n2

j=2 x
(j)
2 + n2

P
n1

j=2 x
(j)
1

�
xs2  

1
n2

�
xs1 +

P
n2

j=2 x
(j)
2

�
dxs

i
 !(xs

i
� xi); i = 1; 2; 0 < ! � 1

A A1 +A2 + v � (dxs1 � dxs2)

If (jjAjj > \a tiny number" ) then

n̂ A=jjAjj
h � (dxs1 �A1 + dxs2 �A2 + dxs2 � v � dxs1) =jjAjj
xi  xi + dxs

i
+ hn̂; i = 1; 2

Figures 9 and 10 show results of smoothing grids with nonsmooth features using Algorithm 4.

In Figure 9, a cube is depicted after 0, 10, 100, and 1000 sweeps with ! = 1. Volume is conserved

throughout. Note that after only 10 sweeps the cube has been well smoothed at the 12 edges.

In Figure 10, we initially randomly perturb the node positions of the lower half of a sphere and

use Algorithm 4 for 1, 5, 10, 100, and 1000 sweeps. We use ! = 0:1 to allow the algorithm to make
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changes more gradually. (If we had used ! = 1, it would roughly take 1=10 as many interaions to

produce the results depicted.) In both these examples, the algorithm seems to be moving the grid

towards a spherical shape even though the grid topology is nearly regular in Figure 10 and highly

irregular in Figure 9.

4 Volume conserving smoothing of triple lines

In simulations involving several volume regions whose union comprises the full computational do-

main, it may be necessary to perform smoothing on the surfaces of all the volumes with the require-

ment that each individual volume is conserved. (We refer to each distinct region as a \material",

and we are here concerned with the problem of smoothing the boundaries of all materials such that

all material volumes are conserved.) Algorithms 3 and 4 are adequate for smoothing nodes that

exist on surfaces separating two distinct materials or one material and the exterior of the domain,

but cannot be used for lines of multiple intersection where three or more materials intersect or two

or more materials intersect with the external boundary.

We now generalize our schemes to allow smoothing of nodes along these intersection lines.

Suppose three materials \1", \2", and \3" surround a line of multiple intersection (a \triple" line).

For a node at x in the interior of the triple line, Algorithm 3 allows us to conserve material 1 (and

thus the sum of the volumes of materials 2 and 3) by correcting smoothing of the node with respect

to the boundary surface of material 1. This involves restricting motions of the node to a plane

perpendicular to n̂(1) given by (5) with the e(j) chosen to lie on the surface bounding material 1.

Further, if we now consider the conservation of material 2 (versus the union of materials 1 and 3),

we are forced to restrict motions of the node to a plane perpendicular to n̂(2) given by (5), with

the e(j) chosen to lie on the surface bounding material 2.

Thus if motion of the node is restricted to be in the line in the direction n̂(1)�n̂(2)

jjn̂(1)�n̂(2) jj
, materials

1 and 2 (and hence material 3) are conserved. This yields Algorithm 5. In Algorithm 5, the

smoothing scheme only uses data given by the positions of the preceding and following nodes on

the triple line, and can be viewed as a combination of Algorithms 1 and 3.

Algorithm 5 Volume conserving smoothing of a triple line using single-node relaxations.

Repeat (sweep) until \done"

For each node xi in the interior of the triple line preceded by xi�1 and succeeded by xi+1

n̂(1)  

Pn

j=1
e(j)�e(j+1)

jj
Pn

j=1
e(j)�e(j+1)jj

using edges from the surface of material \1"

n̂(2)  

Pn

j=1
e
(j)�e(j+1)

jj
Pn

j=1
e(j)�e(j+1)jj

using edges from the surface of material \2"

norm  jjn̂(1) � n̂(2)jj
If (norm > \a tiny number") then

t 
�
n̂(1) � n̂(2)

�
=norm

dxs
i
 1

2
(xi�1 + xi+1)� xi

dxi  (dxs
i
� t)t

xi  xi + dxi

From this analysis, we can see that, in the absence of some special restrictions, we cannot smooth

single nodes on quadruple intersection lines, because all conditions of volume conservation would

require that motion of the node be orthogonal to 3 vectors, which usually implies zero motion.
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Figure 9: Cube after 0, 10, 100, and 1000 sweeps over the surface using Algorithm 4 with !=1.
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Figure 10: \Noisy" sphere after 0, 1, 5, 10, 100, and 1000 sweeps over the surface using Algorithm 4

with ! = 0:1
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Our �nal algorithm involves smoothing edges on a triple intersection line between materials 1,

2, and 3. As in the previous cases where we compared edge relaxation to single node relaxation,

relaxing edges is preferable to relaxing single nodes due to the possibility of smoothing action

orthogonal to the triple line.

If we conserve volumes of materials 1 and 2, volume of material 3 will automatically be con-

served. Thus looking at (11), we write

0 = 6dV (�) = dx1 �A
(�)
1 + dx2 �A

(�)
2 + dx2 � v

(�) � dx1; � = 1; 2: (17)

Here the meaning of (17) is identical to (11), except here the parameter � refers to the particular

material or material surface. Thus for � = 1, A
(1)
i

and v(1) are computed using (7) and (10) with

the e(j) chosen to lie on the surface bounding material 1. If � = 2, quantities are computed using

edges lying on the surface bounding material 2. The dxi are the displacements of the endpoints of

the triple line edge being relaxed. The displacements dxi are assumed to be of the form

dxi = dxs
i
+ c; i = 1; 2: (18)

Here the dxs
i
are displacements due to a smoothing operation, and c is a rigid displacement of the

whole edge designed to restore the volumes of materials 1 and 2. For given dxs
i
, we will determine

the c of least norm.

Indeed, substituting (18) into (17), we obtain

c �A(�) = g
(�)

; � = 1; 2; (19)

where

A(�) � A
(�)
1 +A

(�)
2 + v(�) � (dxs1 � dxs2)

and

g
(�) � �dxs1 �A

(�)
1 � dxs2 �A

(�)
2 � dxs2 � v

(�) � dxs1; � = 1; 2:

From this we can see that for c to be of minimum norm, it must be of the form

c = h
(1)A(1) + h

(2)A(2)
: (20)

(Otherwise, suppose c = h
(1)A(1)+h(2)A(2)+d satis�es (19), for some nonzero d ? span(A(1)

;A(2)).

Then c0 � h
(1)A(1) + h

(2)A(2) satis�es (19) with jjc0jj < jjcjj.) Therefore, assuming the form (20),

(19) yields the system "
A(1) �A(1) A(1) �A(2)

A(1) �A(2) A(2) �A(2)

# "
h
(1)

h
(2)

#
=

"
g
(1)

g
(2)

#
: (21)

If A(1) is not parallel to A(2), the matrix on the left hand side of (21) is symmetric positive de�nite

and hence invertible. In this case, the solution is given by

h
(1) =

1

jjA
(1)

jj
2
jjA

(2)
jj
2
�(A(1)

�A
(2))

2

�
jjA(2)jj2g(1) �A(1) �A(2)

g
(2)
�

(22)

h
(2) =

1

jjA
(1)

jj
2
jjA

(2)
jj
2
�(A(1)

�A
(2))

2

�
�A(1) �A(2)

g
(1) + jjA(1)jj2g(2)

�
: (23)
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Algorithm 6 Volume conserving smoothing of a triple line using edge relaxations.

Repeat (sweep) until \done"

For each edge x1x2 in the interior of the triple line preceded by x0 and succeeded by x3

A
(1)
i
 
P

n

j=1 e
(j) � e(j+1) using edges from the surface of material \1", i = 1; 2

v(1)  e(n2) � e(2) using edges from the surface of material \1"

A
(2)
i
 
P

n

j=1 e
(j) � e(j+1) using edges from the surface of material \2", i = 1; 2

v(2)  e(n2) � e(2) using edges from the surface of material \2"

dxs1  
�
2
3
x0 +

1
3
x3

�
� x1

dxs2  
�
1
3
x0 +

2
3
x3

�
� x2

A(�)  A
(�)
1 +A

(�)
2 + v(�) � (dxs1 � dxs2) � = 1; 2

det jjA(1) jj2jjA(2)jj2 �
�
A(1) �A(2)

�2
If (det > \a tiny number") then

g
(�)  �dxs1 �A

(�)
1 � dxs2 �A

(�)
2 � dxs2 � v

(�) � dxs1 � = 1; 2

h
(1)  

�
jjA(2)jj2g(1) �A(1) �A(2)

g
(2)
�
=det

h
(2)  

�
�A(1) �A(2)

g
(1) + jjA(1)jj2g(2)

�
=det

xi  xi + dxs
i
+ h

(1)A(1) + h
(2)A(2)

i = 1; 2

In Algorithm 6, the smoothing scheme only uses data given by the positions of the preceding

and following nodes on the triple line, and hence can be viewed as combination of Algorithms 2

and 4.

In Figure 11, we show the action of Algorithm 6 on a multimaterial mesh consisting of four

materials whose surface nodes have been perturbed to create a nonsmooth initial state. Interior

edges on the surfaces were subjected to 20 sweeps of Algorithm 4 with ! = 1, and interior edges

on the triple lines were subjected to 20 sweeps with Algorithm 6. Note that there are two triple

lines running through the interior of the �gure and the other \triple lines" run on the surface at

the intersection of two materials and the exterior boundary. For the external triple lines, one can

consider the \third material" conserved to be the complement of all the materials|the \outside".

In the �nal grid, the surfaces are smooth, the volumes of all four materials are preserved, and the

triple lines have been smoothed out as desired.

5 Additional considerations

Use of single node algorithms. In this paper we have presented three single node smoothing al-

gorithms (1, 3, and 5) and three edge smoothing algorithms (2, 4, and 6) that perform volume

conservative smoothing for curves, surfaces, and triple intersection lines. Because of the existence

of nonsmooth grids that are una�ected by the single node algorithms, we advocate use of the edge

relaxation algorithms. It must be noted that there are cases where only the single node algorithms

can be used. For instance, if there is a node i in the interior of surface and all neighbors of that

node are on the boundary, then there is no \interior" edge that contains i that can be relaxed by

Algorithm 4 in order to alter the position of i. Use of Algorithm 3 in this case, rather than simply

leaving i untouched might be preferable. The same consideration applies to the middle node of a

triple line of length 3. Algorithm 6 cannot be used to alter the position of this middle node, and so

use of Algorithm 5 rather than leaving the node untouched might be preferable. In our examples,
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Figure 11: \Noisy" 4 material grid before and after 20 sweeps over all surfaces and triple lines using

Algorithm 6 and Algorithm 4 with ! = 1:
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we did not do this extra coding and indeed it was unnecessary to do so since these problems only

occur with extremely coarse grids.

Topological anomalies. In the case of edge relaxations on triple lines, it is assumed that each of

materials 1, 2, and 3 are incident on the edge x1x2 as a single wedge. If, e.g. material 1 is incident

on x1x2 as two separate wedges (i.e., the surface bounding material 1 intersects itself at x1x2), the

derivation of volume conservation for Algorithm 6 does not apply and volume will not be conserved.

It is important, when coding this algorithm, to detect these (rare) cases and refrain from relaxing

these kinds of edges. Alternatively, one could perform an a posteriori check of volumes to verify

conservation and reject node movements that result in volume changes. (Of course, the volume

check must only involve triangles local to the area|i.e. detect possible volume change rather than

recalculate the whole volume every time an edge is relaxed.)

Quadruple lines. One could probably devise a scheme that could conserve all volumes incident

on a quadruple line using edge smoothing, provided that corrective edge motions more general

than the rigid translation (18) are considered. We do not pursue this here, and thus we leave any

quadruple lines untouched.

Triangle collapse. Whenever using Laplacian smoothing on unstructured grids (or virtually

any other kind of smoothing scheme on unstructured grids), there is the possibility that nodes

are ejected from the polygon formed by their �rst neighbors and hence that triangles are inverted.

Thus it is prudent to always check the orientation or quality of triangles after smoothing and reject

disastrous moves (i.e. use \guards"). (In fact, we did not use any guards in the sample runs in this

paper.)

Volume mesh smoothing. If the goal of the user is to smooth surface meshes in a volume

conserving fashion, then the algorithms in this paper su�ce. If however there are volume elements

conformally attached to the surface elements (e.g. triangles interior to a closed piecewise linear curve

or tetrahedra interior to a closed piecewise linear surface), then it is possible to invert the volume

elements when smoothing the surface elements. In this case one can smooth the volume elements by

repositioning \volume" nodes (nodes not on, but interior to the enclosing surface) in tandem with

smoothing of the surface nodes|and this smoothing will avoid inversion of volume elements. In [1]

and [6] smoothing of volume elements is done by minimizing a functional which becomes in�nite if

volume elements invert, and thus moving volume nodes by requiring minimization of the functional

usually avoids inversion of elements. Nevertheless, extreme deformation of surfaces and/or lack of

volume nodes to move can in principle lead to situations where changing of grid connectivity might

be the only way to avoid volume element inversion. In this case, grid connectivity changes would

have to be employed which satisfy the volume conservation requirement.
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